본문 바로가기

🟣 AI & ML35

마구잡이 질문에도 강건한 RAG 시스템 만들기: Query Transformation TL;DRRAG 기반 어플리케이션은 질문 텍스트를 바탕으로 정보를 검색하기 때문에, 사용자의 무작위적인 질문 형식에 매우 취약한 시스템이다.이를 해결하기 위해 모델이 질문의 핵심 내용을 잘 인식할 수 있도록 질문을 변형하여 재구성할 수 있는데, 이를 'query transformation'라 한다.본 포스트에서는 LangChain 환경을 바탕으로 이러한 변형 방법 중 하나인 'Rewrite'를 알아보고 실제로 구현을 해보도록 한다.   Query transformation은 다양한 방법이 있지만, 이 포스트에서 소개할 방법은 'Rewrite'이다. 말 그대로 사용자 쿼리에 LLM을 한번 더 적용하여, 사용자가 알고자 하는 핵심 정보로 재작성한다. 먼저, 필요한 라이브러리들을 설치해보자. DuckDuckG.. 2024. 7. 20.
문서 내 이미지를 함께 활용할 수 있는 멀티모달(Multi-modal) RAG 시스템 만들어보기 2024.05.13 - [🟣 AI & ML] - 검색증강생성(RAG) - LangChain과 PGVector를 이용한 간단한 RAG 시스템 구축해보기 TL;DR이전 포스트에서 소개했던 일반적인 RAG 시스템은 문서의 텍스트만을 추출하여, 생성 모델의 답변에 활용합니다. 하지만, 많은 문서에서는 유용한 정보들이 텍스트가 아닌 이미지로 표현되어 있기도 합니다.이 때, 멀티모달(multi-modal) 모델을 이용하면 자연어로 문서의 이미지에 대한 검색도 수행할 수 있습니다.이번 포스트에서는 OpenAI의 멀티모달 모델, PGVector, Qdrant DB, LlamaIndex 등의 도구를 활용하여 문서의 텍스트와 이미지에 함께 질의할 수 있는 멀티모달 RAG 시스템을 구축해보겠습니다.    먼저, 아래와 같.. 2024. 6. 20.
검색증강생성(RAG) - LangChain과 PGVector를 이용한 간단한 RAG 시스템 구축해보기 TL;DR이번 포스트에서는 벡터 DB 중, pgvector를 이용하여 간단한 RAG 시스템을 구축해봅니다. pgvector는 PostgreSQL에서 확장 기능(extension)으로 사용할 수 있는 오픈소스 벡터 DB 이며, 오픈소스임에도 불구하고 상용 벡터 DB에 준하는 성능을 보여줍니다.LangChain 프레임워크 상에서, PDF 파일을 벡터로 변환하여 pgvector에 저장하고 유사 문서를 검색하는 과정까지 수행해보겠습니다.   *샘플 PDF 파일 링크: https://www.dir.ca.gov/injuredworkerguidebook/InjuredWorkerGuidebook.pdf 먼저, 필요한 라이브러리들을 설치해주어야 합니다. LangChain은 LLM 기반 어플리케이션을 구축하는 데에 널리 .. 2024. 5. 13.
Meta, Llama 3 발표: 현존하는 가장 뛰어난 성능의 퍼블릭 LLM TL;DR 한국 기준 4월 19일, Meta 사가 Llama 3 를 발표했다. 대중적인 LLM으로는 ChatGPT의 인지도가 높지만, ChatGPT는 웹 서비스 또는 API를 통해서만 이용 가능하며 모델의 구조나 원본은 공개하지 않고 있다. Llama는 1 버전 출시부터 모델 원본을 오픈소스로 공개하여 큰 파장을 일으켰고, 개발자들은 Llama를 바탕으로 하여 많은 파생 모델을 만들어 이용할 수 있었다. 이번 포스트에서는 이제 막 발표된 Llama 3에 대한 Meta 사의 블로그 포스트를 번역 및 요약하며 어떤 점이 변화되었는지 간단히 알아보도록 하자. * 이해를 돕기 위한 의역이 포함될 수 있습니다. 원문 링크: https://ai.meta.com/blog/meta-llama-3 Takeaways(핵심.. 2024. 4. 21.
LLM이 표(table)를 잘 이해하도록 하자: Chain-of-table: Evolving tables in the reasoning chain for table understanding Chain-of-table: Evolving tables in the reasoning chain for table understanding Chain-of-table: 테이블 이해를 위한 추론 체인(reasoning chain)에서 진화하는 테이블 2024-03-11 by Zilong Wang, Student Researcher, and Chen-Yu Lee, Research Scientist, Cloud AI Team 원문 링크: https://blog.research.google/2024/03/chain-of-table-evolving-tables-in.html Chain-of-table: Evolving tables in the reasoning chain for table understandin.. 2024. 4. 7.
ChatGPT에 질문을 해도 반응이 없을 경우 해결 방법 ChatGPT에서 간혹 질문을 해도 답변이 생성되지 않고 멈춰있을 때가 있다. 이 때는 일단, ChatGPT 화면에서 F12 키를 눌러 개발자도구 창에 진입한 후, 상단 메뉴바 '>>(더보기)' 버튼을 눌러 'Application' 메뉴를 클릭한다(크롬 브라우저 기준). 좌측의 Storage 메뉴의 Local storage를 클릭하여 드롭다운을 열고, 나오는 storage들에서 우클릭한 후 Clear 해준다. ChatGPT가 잘 작동하는 지 확인한다. 브라우저의 쿠키를 모두 지우면 해결되기도 하는데, 이 방법이 더 간편해 보인다. 2024. 3. 12.
검색증강생성(RAG) - 그래프 기반 벡터 인덱스 HNSW(Hierarchical Navigable Small World) TL;DR 이전 포스트에서는 역 인덱스 기반의 IVF 벡터 인덱스를 소개했다. IVF와 함께 벡터 데이터베이스에서 가장 많이 사용되고 있는 벡터 인덱스 알고리즘으로, 벡터 데이터를 계층형 그래프로 구성하여 표현하는 HNSW(Hierachical Navigable Small World)이 있다. 이 포스트에서는 HNSW를 이해하는 데에 필요한 개념들을 소개하면서, HNSW의 원리를 이해해보도록 한다. * HNSW 논문 링크(Malkov & Yashunin., 2016): https://arxiv.org/abs/1603.09320 목차 더보기 1. Small World 2. NSW(Navigable Small World) 3. Skip List 4. HNSW(Hierachical Navigable Small.. 2024. 2. 25.
OpenAI의 동영상 생성 모델 'Sora' Technical Report 읽어보기 * 이해를 돕기 위한 의역이 포함될 수 있습니다. * 각주나 이미지, 영상 등의 보조 자료는 원문 링크에서 확인 가능합니다. 원문 링크: https://openai.com/research/video-generation-models-as-world-simulators Video generation models as world simulators 세계 시뮬레이터로서의 비디오 생성 모델 February 15, 2024 We explore large-scale training of generative models on video data. Specifically, we train text-conditional diffusion models jointly on videos and images of variable.. 2024. 2. 17.